The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 141 – 160 of 388

Showing per page

On q-Szász-Durrmeyer operators

Nazim Mahmudov, Havva Kaffaoğlu (2010)

Open Mathematics

In the present paper, we introduce the q-Szász-Durrmeyer operators and justify a local approximation result for continuous functions in terms of moduli of continuity. We also discuss a Voronovskaya type result for the q-Szász-Durrmeyer operators.

On regularization in superreflexive Banach spaces by infimal convolution formulas

Manuel Cepedello-Boiso (1998)

Studia Mathematica

We present here a new method for approximating functions defined on superreflexive Banach spaces by differentiable functions with α-Hölder derivatives (for some 0 < α≤ 1). The smooth approximation is given by means of an explicit formula enjoying good properties from the minimization point of view. For instance, for any function f which is bounded below and uniformly continuous on bounded sets this formula gives a sequence of Δ-convex C 1 , α functions converging to f uniformly on bounded sets and...

Currently displaying 141 – 160 of 388