The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 3 of 3

Showing per page

Bernstein type operators having 1 and x j as fixed points

Zoltán Finta (2013)

Open Mathematics

For certain generalized Bernstein operators {L n} we show that there exist no i, j ∈ {1, 2, 3,…}, i < j, such that the functions e i(x) = x i and e j (x) = x j are preserved by L n for each n = 1, 2,… But there exist infinitely many e i such that e 0(x) = 1 and e j (x) = x j are its fixed points.

Bernstein-type operators on the half line

Antonio Attalienti, Michele Campiti (2002)

Czechoslovak Mathematical Journal

We define Bernstein-type operators on the half line [ 0 , + [ by means of two sequences of strictly positive real numbers. After studying their approximation properties, we also establish a Voronovskaja-type result with respect to a suitable weighted norm.

Currently displaying 1 – 3 of 3

Page 1