The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Recently it was proved for 1 < p < ∞ that , a modulus of smoothness on the unit sphere, and , a K-functional involving the Laplace-Beltrami operator, are equivalent. It will be shown that the range 1 < p < ∞ is optimal; that is, the equivalence does not hold either for p = ∞ or for p = 1.
We study the problem of Lagrange interpolation of functions of two variables by quadratic polynomials under the condition that nodes of interpolation are vertices of a triangulation. For an extensive class of triangulations we prove that every inner vertex belongs to a local six-tuple of vertices which, used as nodes of interpolation, have the following property: For every smooth function there exists a unique quadratic Lagrange interpolation polynomial and the related local interpolation error...
Currently displaying 21 –
30 of
30