Displaying 441 – 460 of 3638

Showing per page

Asymptotic Fourier and Laplace transformations for hyperfunctions

Michael Langenbruch (2011)

Studia Mathematica

We develop an elementary theory of Fourier and Laplace transformations for exponentially decreasing hyperfunctions. Since any hyperfunction can be extended to an exponentially decreasing hyperfunction, this provides simple notions of asymptotic Fourier and Laplace transformations for hyperfunctions, improving the existing models. This is used to prove criteria for the uniqueness and solvability of the abstract Cauchy problem in Fréchet spaces.

Asymptotics of the partition function of a random matrix model

Pavel M. Bleher, Alexander Its (2005)

Annales de l’institut Fourier

We prove a number of results concerning the large N asymptotics of the free energy of a random matrix model with a polynomial potential. Our approach is based on a deformation of potential and on the use of the underlying integrable structures of the matrix model. The main results include the existence of a full asymptotic expansion in even powers of N of the recurrence coefficients of the related orthogonal polynomials for a one-cut regular potential and the double scaling asymptotics of the free...

Atomic decomposition on Hardy-Sobolev spaces

Yong-Kum Cho, Joonil Kim (2006)

Studia Mathematica

As a natural extension of L p Sobolev spaces, we consider Hardy-Sobolev spaces and establish an atomic decomposition theorem, analogous to the atomic decomposition characterization of Hardy spaces. As an application, we deduce several embedding results for Hardy-Sobolev spaces.

Average decay of Fourier transforms and geometry of convex sets.

Luca Brandolini, Marco Rigoli, Giancarlo Travaglini (1998)

Revista Matemática Iberoamericana

Let B be a convex body in R2, with piecewise smooth boundary and let ^χB denote the Fourier transform of its characteristic function. In this paper we determine the admissible decays of the spherical Lp averages of ^χB and we relate our analysis to a problem in the geometry of convex sets. As an application we obtain sharp results on the average number of integer lattice points in large bodies randomly positioned in the plane.

Currently displaying 441 – 460 of 3638