The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 101 – 120 of 561

Showing per page

On convolution operators with small support which are far from being convolution by a bounded measure

Edmond Granirer (1994)

Colloquium Mathematicae

Let C V p ( F ) be the left convolution operators on L p ( G ) with support included in F and M p ( F ) denote those which are norm limits of convolution by bounded measures in M(F). Conditions on F are given which insure that C V p ( F ) , C V p ( F ) / M p ( F ) and C V p ( F ) / W are as big as they can be, namely have l as a quotient, where the ergodic space W contains, and at times is very big relative to M p ( F ) . Other subspaces of C V p ( F ) are considered. These improve results of Cowling and Fournier, Price and Edwards, Lust-Piquard, and others.

On differentiation of integrals with respect to bases of convex sets.

A. Stokolos (1996)

Studia Mathematica

Differentiation of integrals of functions from the class L i p ( 1 , 1 ) ( I 2 ) with respect to the basis of convex sets is established. An estimate of the rate of differentiation is given. It is also shown that there exist functions in L i p ( 1 , 1 ) ( I N ) , N ≥ 3, and H 1 ω ( I 2 ) with ω(δ)/δ → ∞ as δ → +0 whose integrals are not differentiated with respect to the bases of convex sets in the corresponding dimension.

On discrete Fourier spectrum of a harmonic with random frequency modulation

Waldemar Popiński (2013)

Applicationes Mathematicae

Asymptotic properties of the Discrete Fourier Transform spectrum of a complex monochromatic oscillation with frequency randomly distorted at the observation times t=0,1,..., n-1 by a series of independent and identically distributed fluctuations is investigated. It is proved that the second moments of the spectrum at the discrete Fourier frequencies converge uniformly to zero as n → ∞ for certain frequency fluctuation distributions. The observed effect occurs even for frequency fluctuations with...

On Entropy Bumps for Calderón-Zygmund Operators

Michael T. Lacey, Scott Spencer (2015)

Concrete Operators

We study twoweight inequalities in the recent innovative language of ‘entropy’ due to Treil-Volberg. The inequalities are extended to Lp, for 1 < p ≠ 2 < ∞, with new short proofs. A result proved is as follows. Let ℇ be a monotonic increasing function on (1,∞) which satisfy [...] Let σ and w be two weights on Rd. If this supremum is finite, for a choice of 1 < p < ∞, [...] then any Calderón-Zygmund operator T satisfies the bound [...]

On Entropy Bumps for Calderón-Zygmund Operators

Michael T. Lacey, Scott Spencer (2015)

Concrete Operators

We study twoweight inequalities in the recent innovative language of ‘entropy’ due to Treil-Volberg. The inequalities are extended to Lp, for 1 < p ≠ 2 < ∞, with new short proofs. A result proved is as follows. Let ɛ be a monotonic increasing function on (1,∞) which satisfy [...] Let σ and w be two weights on ℝd. If this supremum is finite, for a choice of 1 < p < ∞, [...] then any Calderón-Zygmund operator T satisfies the bound ||Tof||Lp(w) ≲ ||f|| Lp(o).

Currently displaying 101 – 120 of 561