Displaying 1401 – 1420 of 3638

Showing per page

Lacunary Fractional Brownian Motion

Marianne Clausel (2012)

ESAIM: Probability and Statistics

In this paper, a new class of Gaussian field is introduced called Lacunary Fractional Brownian Motion. Surprisingly we show that usually their tangent fields are not unique at every point. We also investigate the smoothness of the sample paths of Lacunary Fractional Brownian Motion using wavelet analysis.

Le théorème de Riesz-Raikov-Bourgain pour un endomorphisme algébrique de p

Jean-Claude Lootgieter (2007)

Annales de l’institut Fourier

Le théorème classique de Riesz-Raikov assure que, pour tout entier θ > 1 et toute f de L 1 ( 𝕋 ) , où 𝕋 = / , les moyennes 1 N 1 N f ( θ n x ) convergent vers 𝕋 f ( t ) d t pour presque tout point x de . J.Bourgain (cf.Israël Math. Conf. Proc. 1990) a prouvé que la convergence précédente a lieu pour tout réel algébrique θ > 1 et toute  f de  L 2 ( 𝕋 ) . Dans cet article nous prouvons que, si ϕ est un endomorphisme de  p algébrique sur , dont les valeurs propres sont toutes de module  > 1 , alors pour toute f de L 2 ( 𝕋 p ) , les moyennes ( 1 / N ) 1 N f ( ϕ n x ) convergent vers 𝕋 p f ( t ) d t pour presque tout point x de p . Nous...

Lebesgue type points in strong (C,α) approximation of Fourier series

Włodzimierz Łenski, Bogdan Roszak (2011)

Banach Center Publications

We present an estimation of the H k , k r q , α f and H λ , u ϕ , α f means as approximation versions of the Totik type generalization (see [5], [6]) of the result of G. H. Hardy, J. E. Littlewood. Some corollaries on the norm approximation are also given.

Lifting properties, Nehari theorem and Paley lacunary inequality.

Mischa Cotlar, Cora Sadosky (1986)

Revista Matemática Iberoamericana

A general notion of lifting properties for families of sesquilinear forms is formulated. These lifting properties, which appear as particular cases in many classical interpolation problems, are studied for the Toeplitz kernels in Z, and applied for refining and extending the Nehari theorem and the Paley lacunary inequality.

Limit points of eigenvalues of truncated unbounded tridiagonal operators

E.K. Ifantis, C.G. Kokologiannaki, E. Petropoulou (2007)

Open Mathematics

Let T be a self-adjoint tridiagonal operator in a Hilbert space H with the orthonormal basis {e n}n=1∞, σ(T) be the spectrum of T and Λ(T) be the set of all the limit points of eigenvalues of the truncated operator T N. We give sufficient conditions such that the spectrum of T is discrete and σ(T) = Λ(T) and we connect this problem with an old problem in analysis.

Limiting Sobolev inequalities for vector fields and canceling linear differential operators

Jean Van Schaftingen (2013)

Journal of the European Mathematical Society

The estimate D k - 1 u L n / ( n - 1 ) A ( D ) u L 1 is shown to hold if and only if A ( D ) is elliptic and canceling. Here A ( D ) is a homogeneous linear differential operator A ( D ) of order k on n from a vector space V to a vector space E . The operator A ( D ) is defined to be canceling if ξ n { 0 } A ( ξ ) [ V ] = { 0 } . This result implies in particular the classical Gagliardo–Nirenberg–Sobolev inequality, the Korn–Sobolev inequality and Hodge–Sobolev estimates for differential forms due to J. Bourgain and H. Brezis. In the proof, the class of cocanceling homogeneous linear differential...

Linear combinations of generators in multiplicatively invariant spaces

Victoria Paternostro (2015)

Studia Mathematica

Multiplicatively invariant (MI) spaces are closed subspaces of L²(Ω, ) that are invariant under multiplication by (some) functions in L ( Ω ) ; they were first introduced by Bownik and Ross (2014). In this paper we work with MI spaces that are finitely generated. We prove that almost every set of functions constructed by taking linear combinations of the generators of a finitely generated MI space is a new set of generators for the same space, and we give necessary and sufficient conditions on the linear...

Currently displaying 1401 – 1420 of 3638