L2-approximation by the translates of a function and related attenuation factors.
Nous définissons un produit renormalisé par ondelettes qui améliore, dans certains cadres fonctionnels, les propriétés du produit usuel de deux fonctions. Grâce à cette technique de renormalisation du produit nous obtenons une démonstration par ondelettes d'une version précisée du théorème du Jacobien. Finalement nous établissons le lien entre ce produit renormalisé par ondelettes et les paraproduits de J.M. Bony.
In this paper, a new class of Gaussian field is introduced called Lacunary Fractional Brownian Motion. Surprisingly we show that usually their tangent fields are not unique at every point. We also investigate the smoothness of the sample paths of Lacunary Fractional Brownian Motion using wavelet analysis.
In this paper, a new class of Gaussian field is introduced called Lacunary Fractional Brownian Motion. Surprisingly we show that usually their tangent fields are not unique at every point. We also investigate the smoothness of the sample paths of Lacunary Fractional Brownian Motion using wavelet analysis.
Le théorème classique de Riesz-Raikov assure que, pour tout entier et toute de , où , les moyennespour presque tout point de . J.Bourgain (cf.Israël Math. Conf. Proc. 1990) a prouvé que la convergence précédente a lieu pour tout réel algébrique et toute de . Dans cet article nous prouvons que, si est un endomorphisme de algébrique sur , dont les valeurs propres sont toutes de module , alors pour toute de , les moyennes convergent vers pour presque tout point de . Nous...
Nous étudons sur des exemples significatifs l’intersection entre le traitement du signal et l’analyse fonctionnelle.
We present an estimation of the and means as approximation versions of the Totik type generalization (see [5], [6]) of the result of G. H. Hardy, J. E. Littlewood. Some corollaries on the norm approximation are also given.
A general notion of lifting properties for families of sesquilinear forms is formulated. These lifting properties, which appear as particular cases in many classical interpolation problems, are studied for the Toeplitz kernels in Z, and applied for refining and extending the Nehari theorem and the Paley lacunary inequality.