MRA super-wavelets.
In recent work by Reguera and Thiele (2012) and by Reguera and Scurry (2013), two conjectures about joint weighted estimates for Calderón-Zygmund operators and the Hardy-Littlewood maximal function were refuted in the one-dimensional case. One of the key ingredients for these results is the construction of weights for which the value of the Hilbert transform is substantially bigger than that of the maximal function. In this work, we show that a similar construction is possible for classical Calderón-Zygmund...
We present a multidimensional analogue of an inequality by van der Corput-Visser concerning the coefficients of a real trigonometric polynomial. As an application, we obtain an improved estimate from below of the Bohr radius for the hypercone 𝓓₁ⁿ = {z ∈ ℂⁿ: |z₁|+. .. +|zₙ| < 1} when 3 ≤ n ≤ 10.
We establish a multidimensional decay of oscillatory integrals with degenerate stationary points, gaining the decay with respect to all space variables. This bridges the gap between the one-dimensional decay for degenerate stationary points given by the classical van der Corput lemma and the multidimensional decay for non-degenerate stationary points given by the stationary phase method. Complex-valued phase functions as well as phases and amplitudes of limited regularity are considered. Conditions...
It is proved that the multi-dimensional maximal Fejér operator defined in a cone is bounded from the amalgam Hardy space to . This implies the almost everywhere convergence of the Fejér means in a cone for all , which is larger than .
A famous theorem of Carleson says that, given any function , , its Fourier series converges for almost every . Beside this property, the series may diverge at some point, without exceeding . We define the divergence index at as the infimum of the positive real numbers such that and we are interested in the size of the exceptional sets , namely the sets of with divergence index equal to . We show that quasi-all functions in have a multifractal behavior with respect to this definition....
We prove that an almost diagonal condition on the (m + 1)-linear tensor associated to an m-linear operator implies boundedness of the operator on products of classical function spaces. We then provide applications to the study of certain singular integral operators.
It is shown that multilinear Calderón-Zygmund operators are bounded on products of Hardy spaces.
Grafakos-Kalton [Collect. Math. 52 (2001)] discussed the boundedness of multilinear Calderón-Zygmund operators on the product of Hardy spaces. Then Lerner et al. [Adv. Math. 220 (2009)] defined weights and built a theory of weights adapted to multilinear Calderón-Zygmund operators. In this paper, we combine the above results and obtain some estimates for multilinear Calderón-Zygmund operators on weighted Hardy spaces and also obtain a weighted multilinear version of an inequality for multilinear...
Under the assumption that m is a non-doubling measure on Rd, the authors obtain the (Lp,Lq)-boundedness and the weak type endpoint estimate for the multilinear commutators generated by fractional integrals with RBMO (m) functions of Tolsa or with Osc exp Lr(m) functions for r greater than or equal to 1, where Osc exp Lr(m) is a space of Orlicz type satisfying that Osc exp Lr(m)=RBMO(m) if r=1 and Osc exp Lr(m) is a subset of RBMO(m) if r>1.
We find optimal conditions on m-linear Fourier multipliers that give rise to bounded operators from products of Hardy spaces , , to Lebesgue spaces . These conditions are expressed in terms of L²-based Sobolev spaces with sharp indices within the classes of multipliers we consider. Our results extend those obtained in the linear case (m = 1) by Calderón and Torchinsky (1977) and in the bilinear case (m = 2) by Miyachi and Tomita (2013). We also prove a coordinate-type Hörmander integral condition...
We survey the theory of multilinear singular integral operators with modulation symmetry. The basic example for this theory is the bilinear Hilbert transform and its multilinear variants. We outline a proof of boundedness of Carleson's operator which shows the close connection of this operator to multilinear singular integrals. We discuss particular multilinear singular integrals which historically arose in the study of eigenfunctions of Schrödinger operators.[Proceedings of the 6th International...