Displaying 1621 – 1640 of 3638

Showing per page

Necessary conditions for the L p -convergence ( 0 < p < 1 ) of single and double trigonometric series

Xhevat Z. Krasniqi, Péter Kórus, Ferenc Móricz (2014)

Mathematica Bohemica

We give necessary conditions in terms of the coefficients for the convergence of a double trigonometric series in the L p -metric, where 0 < p < 1 . The results and their proofs have been motivated by the recent papers of A. S. Belov (2008) and F. Móricz (2010). Our basic tools in the proofs are the Hardy-Littlewood inequality for functions in H p and the Bernstein-Zygmund inequalities for the derivatives of trigonometric polynomials and their conjugates in the L p -metric, where 0 < p < 1 .

New Calderón-Zygmund decomposition for Sobolev functions

N. Badr, F. Bernicot (2010)

Colloquium Mathematicae

We give a new Calderón-Zygmund decomposition for Sobolev spaces on a doubling Riemannian manifold. Our hypotheses are weaker than those of the already known decomposition which used classical Poincaré inequalities.

New estimates for elliptic equations and Hodge type systems

Jean Bourgain, Haïm Brezis (2007)

Journal of the European Mathematical Society

We establish new estimates for the Laplacian, the div-curl system, and more general Hodge systems in arbitrary dimension n , with data in L 1 . We also present related results concerning differential forms with coefficients in the limiting Sobolev space W 1 , n .

Non-compact Littlewood-Paley theory for non-doubling measures

Michael Wilson (2007)

Studia Mathematica

We prove weighted Littlewood-Paley inequalities for linear sums of functions satisfying mild decay, smoothness, and cancelation conditions. We prove these for general “regular” measure spaces, in which the underlying measure is not assumed to satisfy any doubling condition. Our result generalizes an earlier result of the author, proved on d with Lebesgue measure. Our proof makes essential use of the technique of random dyadic grids, due to Nazarov, Treil, and Volberg.

Nonconvolution transforms with oscillating kernels that map 1 0 , 1 into itself

G. Sampson (1993)

Studia Mathematica

We consider operators of the form ( Ω f ) ( y ) = ʃ - Ω ( y , u ) f ( u ) d u with Ω(y,u) = K(y,u)h(y-u), where K is a Calderón-Zygmund kernel and h L (see (0.1) and (0.2)). We give necessary and sufficient conditions for such operators to map the Besov space 1 0 , 1 (= B) into itself. In particular, all operators with h ( y ) = e i | y | a , a > 0, a ≠ 1, map B into itself.

Currently displaying 1621 – 1640 of 3638