Displaying 1741 – 1760 of 3651

Showing per page

On almost periodicity defined via non-absolutely convergent integrals

Dariusz Bugajewski, Adam Nawrocki (2025)

Czechoslovak Mathematical Journal

We investigate some properties of the normed space of almost periodic functions which are defined via the Denjoy-Perron (or equivalently, Henstock-Kurzweil) integral. In particular, we prove that this space is barrelled while it is not complete. We also prove that a linear differential equation with the non-homogenous term being an almost periodic function of such type, possesses a solution in the class under consideration.

On analytic rapidly decreasing functions of a real variable

Gianfranco Cimmino (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Condizione necessaria e sufficiente affinché una funzione rapidamente decrescente di variabile reale sia uniformemente analitica è che per i suoi coefficienti γ 0 , γ 1 , di Fourier-Hermite riesca γ m = 0 ( e m t ) per t > 0 abbastanza piccolo.

On approach regions for the conjugate Poisson integral and singular integrals

S. Ferrando, R. Jones, K. Reinhold (1996)

Studia Mathematica

Let ũ denote the conjugate Poisson integral of a function f L p ( ) . We give conditions on a region Ω so that l i m ( v , ε ) ( 0 , 0 ) ( v , ε ) Ω ũ ( x + v , ε ) = H f ( x ) , the Hilbert transform of f at x, for a.e. x. We also consider more general Calderón-Zygmund singular integrals and give conditions on a set Ω so that s u p ( v , r ) Ω | ʃ | t | > r k ( x + v - t ) f ( t ) d t | is a bounded operator on L p , 1 < p < ∞, and is weak (1,1).

Currently displaying 1741 – 1760 of 3651