The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We provide a local as well as a semilocal convergence analysis for Newton's method using unifying hypotheses on twice Fréchet-differentiable operators in a Banach space setting. Our approach extends the applicability of Newton's method. Numerical examples are also provided.
We improve (in some sense) a recent theorem due to Banas and Knap (1989) about the existence of integrable solutions of a functional-integral equation.
By using the theory of strongly continuous cosine families of linear operators in Banach space the existence of solutions of a semilinear second order differential initial value problem (1) as well as the existence of solutions of the linear inhomogeneous problem corresponding to (1) are proved. The main result of the paper is contained in Theorem 5.
The behaviour near the origin of nontrivial solutions to integral Volterra equations with a power nonlinearity is studied. Estimates of nontrivial solutions are given and some numerical examples are considered.
We prove exponential decay for the solution of an abstract integrodifferential equation. This equation involves coefficients of polynomial type, weakly singular kernels as well as different powers of the unknown in some norms.
One parabolic integrodifferential problem in the abstract real Hilbert spaces is studied in this paper. The semidiscrete and full discrete approximate solution is defined and the error estimate of Rothe's function in some function spaces is established.
Currently displaying 21 –
40 of
52