The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider the following Volterra equation:(1) u(x) = ∫0x k(x-s) g(u(s)) ds, where,k: [0, δ0] → R is an increasing absolutely continuous function such thatk(0) = 0g: [0,+ ∞) → [0,+ ∞) is an increasing absolutely continuous function such that g(0) = 0 and g(u)/u → ∞ as u → 0+ (see [3]).Let us note that (1) has always the trivial solution u = 0.Some necessary and sufficient conditions for the existence of nontrivial solutions to (1) with k(x) = xα - 1 (α>0) are given in [1], [2] and...
We deal with the implicit integral equation
where and where , and . We prove an existence theorem for solutions where the contituity of with respect to the second variable is not assumed.
We deal with the integral equation , with , and . We prove an existence theorem for solutions , , where is not assumed to be continuous in the second variable. Our result extends a result recently obtained for the special case where does not depend explicitly on the first variable .
The aim of the present paper is to investigate the global existence of mild solutions of nonlinear mixed Volterra-Fredholm integrodifferential equations, with nonlocal condition. Our analysis is based on an application of the Leray-Schauder alternative and rely on a priori bounds of solutions.
A differential equation of the form
(q(t)k(u)u')' = λf(t)h(u)u'
depending on the positive parameter λ is considered and nonnegative solutions u such that u(0) = 0, u(t) > 0 for t > 0 are studied. Some theorems about the existence, uniqueness and boundedness of solutions are given.
Existence results of nonnegative solutions of asymptotically linear, nonlinear integral equations are studied.
Currently displaying 1 –
20 of
26