Linear operations tensor products, and contractive projections in function spaces
Representation of bounded and compact linear operators in the Banach space of regulated functions is given in terms of Perron-Stieltjes integral.
We study linear operators from a non-locally convex Orlicz space to a Banach space . Recall that a linear operator is said to be σ-smooth whenever in implies . It is shown that every σ-smooth operator factors through the inclusion map , where Φ̅ denotes the convex minorant of Φ. We obtain the Bochner integral representation of σ-smooth operators . This extends some earlier results of J. J. Uhl concerning the Bochner integral representation of linear operators defined on a locally convex...
It is shown that if E is a Frechet space with the strong dual E* then Hb(E*), the space of holomorphic functions on E* which are bounded on every bounded set in E*, has the property (DN) when E ∈ (DN) and that Hb(E*) ∈ (Ω) when E ∈ (Ω) and either E* has an absolute basis or E is a Hilbert-Frechet-Montel space. Moreover the complementness of ideals J(V) consisting of holomorphic functions on E* which are equal to 0 on V in H(E*) for every nuclear Frechet space E with E ∈ (DN) ∩ (Ω) is stablished...
Linear topological properties of the Lumer-Smirnov class of the unit polydisc are studied. The topological dual and the Fréchet envelope are described. It is proved that has a weak basis but it is nonseparable in its original topology. Moreover, it is shown that the Orlicz-Pettis theorem fails for .
Estudiamos algunas situaciones donde encontramos un problema que, a primera vista, parece no tener solución. Pero, de hecho, existe un subespacio vectorial grande de soluciones del mismo.