The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 33

Showing per page

Zeros of random functions in Bergman spaces

Joel H. Shapiro (1979)

Annales de l'institut Fourier

Suppose μ is a finite positive rotation invariant Borel measure on the open unit disc Δ , and that the unit circle lies in the closed support of μ . For 0 < p < the Bergman space A μ p is the collection of functions in L p ( μ ) holomorphic on Δ . We show that whenever a Gaussian power series f ( z ) = Σ ζ n a n z n almost surely lies in A μ p but not in q > p A μ p , then almost surely: a) the zero set Z ( f ) of f is not contained in any A μ q zero set ( q > p , and b) Z ( f + 1 ) Z ( f - 1 ) is not contained in any A μ q zero set.

Currently displaying 1 – 20 of 33

Page 1 Next