The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 3501 – 3520 of 13227

Showing per page

Espaces à modèle séparable

Jean Saint Raymond (1976)

Annales de l'institut Fourier

On étudie les espaces vectoriels topologiques localement convexes métrisables qui sont image linéaire continue d’un espace de Fréchet séparable. On détermine la classe de Baire de ces espaces dans leur complété, ainsi que la classe de Baire des formes linéaires boréliennes sur ces espaces, en construisant pour chacun une suite transfinie dénombrable d’espaces de Fréchet séparables qui lui est canoniquement associée.

Espaces BMO, inégalités de Paley et multiplicateurs idempotents

Hubert Lelièvre (1997)

Studia Mathematica

Generalizing the classical BMO spaces defined on the unit circle with vector or scalar values, we define the spaces B M O ψ q ( ) and B M O ψ q ( , B ) , where ψ q ( x ) = e x q - 1 for x ≥ 0 and q ∈ [1,∞[, and where B is a Banach space. Note that B M O ψ 1 ( ) = B M O ( ) and B M O ψ 1 ( , B ) = B M O ( , B ) by the John-Nirenberg theorem. Firstly, we study a generalization of the classical Paley inequality and improve the Blasco-Pełczyński theorem in the vector case. Secondly, we compute the idempotent multipliers of B M O ψ q ( ) . Pisier conjectured that the supports of idempotent multipliers of L ψ q ( ) form a Boolean...

Currently displaying 3501 – 3520 of 13227