Displaying 401 – 420 of 1948

Showing per page

On extensions of orthosymmetric lattice bimorphisms

Mohamed Ali Toumi (2013)

Mathematica Bohemica

In the paper we prove that every orthosymmetric lattice bilinear map on the cartesian product of a vector lattice with itself can be extended to an orthosymmetric lattice bilinear map on the cartesian product of the Dedekind completion with itself. The main tool used in our proof is the technique associated with extension to a vector subspace generated by adjoining one element. As an application, we prove that if ( A , * ) is a commutative d -algebra and A 𝔡 its Dedekind completion, then, A 𝔡 can be equipped...

On extrapolation spaces

Giuseppe Da Prato, Pierre Grisvard (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si definisce un nuovo tipo di spazi a partire da un dato spazio di Banach X e da un operatore lineare A in X . Tali spazi si possono pensare come spazi di interpolazione D A ( ϑ ) con ϑ negativo.

On extremal positive maps acting between type I factors

Marcin Marciniak (2010)

Banach Center Publications

The paper is devoted to the problem of classification of extremal positive linear maps acting between 𝔅(𝒦) and 𝔅(ℋ) where 𝒦 and ℋ are Hilbert spaces. It is shown that every positive map with the property that rank ϕ(P) ≤ 1 for any one-dimensional projection P is a rank 1 preserver. This allows us to characterize all decomposable extremal maps as those which satisfy the above condition. Further, we prove that every extremal positive map which is 2-positive turns out to be automatically completely...

On extreme points of Orlicz spaces with Orlicz norm.

Henryk Hudzik, Marek Wisla (1993)

Collectanea Mathematica

In the paper we consider a class of Orlicz spaces equipped with the Orlicz norm over a non-negative, complete and sigma-finite measure space (T,Sigma,mu), which covers, among others, Orlicz spaces isomorphic to L-infinite and the interpolation space L1 + L-infinite. We give some necessary conditions for a point x from the unit sphere to be extreme. Applying this characterization, in the case of an atomless measure mu, we find a description of the set of extreme points of L1 + L-infinite which corresponds...

On fine properties of mixtures with respect to concentration of measure and Sobolev type inequalities

Djalil Chafaï, Florent Malrieu (2010)

Annales de l'I.H.P. Probabilités et statistiques

Mixtures are convex combinations of laws. Despite this simple definition, a mixture can be far more subtle than its mixed components. For instance, mixing gaussian laws may produce a potential with multiple deep wells. We study in the present work fine properties of mixtures with respect to concentration of measure and Sobolev type functional inequalities. We provide sharp Laplace bounds for Lipschitz functions in the case of generic mixtures, involving a transportation cost diameter of the mixed...

On finitely generated closed ideals in H ( D )

Jean Bourgain (1985)

Annales de l'institut Fourier

Assume f 1 , ... , f N a finite set of functions in H ( D ) , the space of bounded analytic functions on the open unit disc. We give a sufficient condition on a function f in H ( D ) to belong to the norm-closure of the ideal I ( f 1 , ... , f N ) generated by f 1 , ... , f N , namely the property | f ( z ) | α ( | f 1 ( z ) | + ... + | f N ( z ) | ) for z D for some function α : R + R + satisfying lim t 0 α ( t ) / t = 0 . The main feature in the proof is an improvement in the contour-construction appearing in L. Carleson’s solution of the corona-problem. It is also shown that the property | f ( z ) | C max 1 j N | f j ( z ) | for z D for some constant C , does not necessary imply that f is...

Currently displaying 401 – 420 of 1948