The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 41 –
60 of
374
We prove a basic property of continuous multilinear mappings between topological vector spaces, from which we derive an easy proof of the fact that a multilinear mapping (and a polynomial) between topological vector spaces is weakly continuous on weakly bounded sets if and only if it is weakly uniformly} continuous on weakly bounded sets. This result was obtained in 1983 by Aron, Hervés and Valdivia for polynomials between Banach spaces, and it also holds if the weak topology is replaced by a coarser...
We study some classes of summing operators between spaces of integrable functions with respect to a vector measure in order to prove a factorization theorem for -summing operators between Banach spaces.
We present a general necessary and sufficient algebraic condition for the spectral dilation of a finitely additive L(X,Y)-valued measure of finite semivariation when X and Y are Banach spaces. Using our condition we derive the main results of Rosenberg, Makagon and Salehi, and Miamee without the assumption that X and/or Y are Hilbert spaces. In addition we relate the dilation problem to the problem of factoring a family of operators through a single Hilbert space.
In recent papers, the Right and the Strong* topologies have been introduced and studied on general Banach spaces. We characterize different types of continuity for multilinear operators (joint, uniform, etc.) with respect to the above topologies. We also study the relations between them. Finally, in the last section, we relate the joint Strong*-to-norm continuity of a multilinear operator T defined on C*-algebras (respectively, JB*-triples) to C*-summability (respectively, JB*-triple-summability)....
In every infinite-dimensional Fréchet space X, we construct a linear subspace E such that E is an -subset of X and contains a retract R so that is not homeomorphic to . This shows that Toruńczyk’s Factor Theorem fails in the Borel case.
On montre que le faisceau des sursolutions locales dans d’un certain opérateur elliptique est maximal pour un principe du minimum adapté aux espaces de Sobolev. La continuité de la réduite variationnelle des éléments continus permet alors d’étudier des représentants s.c.i.
Let U be an open convex subset of Cn, n belonging to N, such that the set of all polinomies is dense in the space of all holomorphic and complex functions on U, (H(U), t0), where t0 is the open-compact topology.We endow the space HK(U) of all holomorphic functions on U that have asymptotic expansion at the origin with a metric and we study a particular compact subset of HK(U).
For infinite dimensional Banach spaces X we investigate the maximal size of a family of pairwise almost disjoint normalized Hamel bases of X, where two sets A and B are said to be almost disjoint if the cardinality of A ∩ B is smaller than the cardinality of either A or B.
A subsheaf of the sheaf of germs functions over an open subset of is called a sheaf of sub function. Comparing with the investigations of sheaves of ideals of , we study the finite presentability of certain sheaves of sub -rings. Especially we treat the sheaf defined by the distribution of Mather’s -classes of a mapping.
Let E and F be two vector spaces in separating duality. Let us consider T0, the uniform convergence topology on E on the partial sums of families of F which are weakly summable to 0 in F; then, if (E',T'0) is the completion of (E,T0), the finest locally convex topology T on F for which all the weakly summable families in F are also T-summable, is the uniform convergence topology on the T'0-compact subsets of E'. If F is a Banach space and E its dual space F', every weakly summable family in F is...
Currently displaying 41 –
60 of
374