The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 621 –
640 of
1582
We present two examples. One of an operator T such that is precompact in the operator norm and the spectrum of T on the unit circle consists of an infinite number of points accumulating at 1, and the other of an operator T such that is convergent to zero but T is not power bounded.
Let X,Y be real Banach spaces and ε > 0. Suppose that f:X → Y is a surjective map satisfying | ∥f(x)-f(y)∥ - ∥x-y∥ | ≤ ε for all x,y ∈ X. Hyers and Ulam asked whether there exists an isometry U and a constant K such that ∥f(x) - Ux∥ ≤ Kε for all x ∈ X. It is well-known that the answer to the Hyers-Ulam problem is positive and K = 2 is the best possible solution with assumption f(0) = U0 = 0. In this paper, using the idea of Figiel's theorem on nonsurjective isometries, we give a new proof of...
It is proved that for any , where is the Poulsen simplex, so that and , are smooth points, there is a rotation of carrying in .
The Poincaré inequality is extended to uniformly doubling metric-measure spaces which satisfy a version of the triangle comparison property. The proof is based on a generalization of the change of variables formula.
Currently displaying 621 –
640 of
1582