On an extension of finite functionals by the transfinite induction
Let ℛ denote some kind of rotundity, e.g., the uniform rotundity. Let X admit an ℛ-norm and let Y be a reflexive subspace of X with some ℛ-norm ∥·∥. Then we are able to extend ∥·∥ from Y to an ℛ-norm on X.
Let H(B) denote the space of all holomorphic functions on the unit ball B of ℂⁿ. Let φ be a holomorphic self-map of B and g ∈ H(B) such that g(0) = 0. We study the integral-type operator , f ∈ H(B). The boundedness and compactness of from Privalov spaces to Bloch-type spaces and little Bloch-type spaces are studied
An example of a nonzero σ-finite Borel measure μ with everywhere dense linear manifold of admissible (in the sense of invariance) translation vectors is constructed in the Hilbert space ℓ₂ such that μ and any shift of μ by a vector are neither equivalent nor orthogonal. This extends a result established in [7].
Consideramos una clase de problemas de optimización que surgen en estimaciones de la densidad de datos en dimensión elevada a partir de proyecciones en subespacios de dimensión más baja. Los criterios que se usan para la selección óptima del modelo son máxima entropía y máxima verosimilitud. En cada caso nuestro planteamiento requiere estimadores de la densidad univariados y a este respecto exploramos el uso de modelos mezcla de densidades gaussianas y de estimadores de Parzen para los datos proyectados....
We show that in the space C[-1,1] there exists an orthogonal algebraic polynomial basis with optimal growth of degrees of the polynomials.
In this paper, we present an analytic definition for the relative torsion for flat C*-algebra bundles over a compact manifold. The advantage of such a relative torsion is that it is defined without any hypotheses on the flat C*-algebra bundle. In the case where the flat C*-algebra bundle is of determinant class, we relate it easily to the L^2 torsion as defined in [7],[5].