Displaying 981 – 1000 of 1948

Showing per page

On spectral continuity of positive elements

S. Mouton (2006)

Studia Mathematica

Let x be a positive element of an ordered Banach algebra. We prove a relationship between the spectra of x and of certain positive elements y for which either xy ≤ yx or yx ≤ xy. Furthermore, we show that the spectral radius is continuous at x, considered as an element of the set of all positive elements y ≥ x such that either xy ≤ yx or yx ≤ xy. We also show that the property ϱ(x + y) ≤ ϱ(x) + ϱ(y) of the spectral radius ϱ can be obtained for positive elements y which satisfy at least one of the...

On spreading c 0 -sequences in Banach spaces

Vassiliki Farmaki (1999)

Studia Mathematica

We introduce and study the spreading-(s) and the spreading-(u) property of a Banach space and their relations. A space has the spreading-(s) property if every normalized weakly null sequence has a subsequence with a spreading model equivalent to the usual basis of c 0 ; while it has the spreading-(u) property if every weak Cauchy and non-weakly convergent sequence has a convex block subsequence with a spreading model equivalent to the summing basis of c 0 . The main results proved are the following: (a)...

On stability and robust stability of positive linear Volterra equations in Banach lattices

Satoru Murakami, Pham Ngoc (2010)

Open Mathematics

We study positive linear Volterra integro-differential equations in Banach lattices. A characterization of positive equations is given. Furthermore, an explicit spectral criterion for uniformly asymptotic stability of positive equations is presented. Finally, we deal with problems of robust stability of positive systems under structured perturbations. Some explicit stability bounds with respect to these perturbations are given.

Currently displaying 981 – 1000 of 1948