On the Classification of Complex Lindenstrauss Spaces.
For and an open bounded subset of definie as the closed subset of consisting of all functions that are constant almost everywhere on almost all lines parallel to . For a given set of directions , , we study for which it is true that the vector spaceThis problem arizes naturally in the study of image reconstruction from projections (tomography). An essentially equivalent problem is to decide whether a certain matrix-valued differential operator has closed range. If , the boundary...
The purpose of this paper is to give a characterization of the closure of the Lizorkin space in spaces of Beppo Levi type. As preparations for the proof, we establish the invariance of the Lizorkin space, and give local integral representations for smooth functions.
We show that a Banach space X has the compact approximation property if and only if for every Banach space Y and every weakly compact operator T: Y → X, the space = S ∘ T: S compact operator on X is an ideal in = span(,T) if and only if for every Banach space Y and every weakly compact operator T: Y → X, there is a net of compact operators on X such that and in the strong operator topology. Similar results for dual spaces are also proved.
It is shown that for every 1 ≤ ξ < ω, two subspaces of the Schreier space generated by subsequences and , respectively, of the natural Schauder basis of are isomorphic if and only if and are equivalent. Further, admits a continuum of mutually incomparable complemented subspaces spanned by subsequences of . It is also shown that there exists a complemented subspace spanned by a block basis of , which is not isomorphic to a subspace generated by a subsequence of , for every ....
We call a subset S of a topological vector space V linearly Borel if for every finite number n, the set of all linear combinations of S of length n is a Borel subset of V. It is shown that a Hamel basis of an infinite-dimensional Banach space can never be linearly Borel. This answers a question of Anatoliĭ Plichko.