The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let ν be a positive measure on a σ-algebra Σ of subsets of some set and let X be a Banach space. Denote by ca(Σ,X) the Banach space of X-valued measures on Σ, equipped with the uniform norm, and by ca(Σ,ν,X) its closed subspace consisting of those measures which vanish at every ν-null set. We are concerned with the subsets and of ca(Σ,X) defined by the conditions |φ| = ν and |φ| ≥ ν, respectively, where |φ| stands for the variation of φ ∈ ca(Σ,X). We establish necessary and sufficient conditions...
Stemming from the study of signals via wavelet coefficients, the spaces are complete metrizable and separable topological vector spaces, parametrized by a function ν, whose elements are sequences indexed by a binary tree. Several papers were devoted to their basic topology; recently it was also shown that depending on ν, may be locally convex, locally p-convex for some p > 0, or not at all, but under a minor condition these spaces are always pseudoconvex. We deal with some more sophisticated...
Currently displaying 1 –
4 of
4