The search session has expired. Please query the service again.
For a finite and positive measure space Ω,∑,μ characterizations of weak Cauchy sequences in , the space of μ-essentially bounded vector-valued functions f:Ω → X, are presented. The fine distinction between Asplund and conditionally weakly compact subsets of is discussed.
In this note we present necessary and sufficient conditions characterizing conditionally weakly compact sets in the space of (bounded linear) operator valued measures . This generalizes a recent result of the author characterizing conditionally weakly compact subsets of the space of nuclear operator valued measures . This result has interesting applications in optimization and control theory as illustrated by several examples.
Every weakly countably compact closed convex set in a locally convex space has the quasi-weak drop property.
Currently displaying 1 –
10 of
10