The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 98

Showing per page

On a functional-analysis approach to orthogonal sequences problems.

Vladimir P. Fonf, Anatolij M. Plichko, V. V. Shevchik (2001)

RACSAM

Sea T un operador lineal acotado e inyectivo de un espacio de Banach X en un espacio de Hilbert H con rango denso y sea {xn} ⊂ X una sucesión tal que {Txn} es ortogonal. Se estudian propiedades de {Txn} dependientes de propiedades de {xn}. También se estudia la ""situación opuesta"", es decir, la acción de un operador T : H → X sobre sucesiones ortogonales.

On asymptotically symmetric Banach spaces

M. Junge, D. Kutzarova, E. Odell (2006)

Studia Mathematica

A Banach space X is asymptotically symmetric (a.s.) if for some C < ∞, for all m ∈ ℕ, for all bounded sequences ( x j i ) j = 1 X , 1 ≤ i ≤ m, for all permutations σ of 1,...,m and all ultrafilters ₁,...,ₘ on ℕ, l i m n , . . . l i m n , | | i = 1 m x n i i | | C l i m n σ ( 1 ) , σ ( 1 ) . . . l i m n σ ( m ) , σ ( m ) | | i = 1 m x n i i | | . We investigate a.s. Banach spaces and several natural variations. X is weakly a.s. (w.a.s.) if the defining condition holds when restricted to weakly convergent sequences ( x j i ) j = 1 . Moreover, X is w.n.a.s. if we restrict the condition further to normalized weakly null sequences. If X is a.s. then all spreading...

On bases in Banach spaces

Tomek Bartoszyński, Mirna Džamonja, Lorenz Halbeisen, Eva Murtinová, Anatolij Plichko (2005)

Studia Mathematica

We investigate various kinds of bases in infinite-dimensional Banach spaces. In particular, we consider the complexity of Hamel bases in separable and non-separable Banach spaces and show that in a separable Banach space a Hamel basis cannot be analytic, whereas there are non-separable Hilbert spaces which have a discrete and closed Hamel basis. Further we investigate the existence of certain complete minimal systems in as well as in separable Banach spaces.

On bibasic systems and a Retherford’s problem

Anatoli Pličko, Paolo Terenzi (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Ogni spazio di Banach ha un sistema bibasico ( x n , f n ) normalizzato; inoltre ogni successione ( x n ) uniformemente minimale appartiene ad un sistema biortogonale limitato ( x n , f n ) , dove ( f n ) è M-basica e normante.

Currently displaying 1 – 20 of 98

Page 1 Next