Displaying 121 – 140 of 302

Showing per page

Mazur spaces.

Wilansky, Albert (1981)

International Journal of Mathematics and Mathematical Sciences

Metrically convex functions in normed spaces

Stanisław Kryński (1993)

Studia Mathematica

Properties of metrically convex functions in normed spaces (of any dimension) are considered. The main result, Theorem 4.2, gives necessary and sufficient conditions for a function to be metrically convex, expressed in terms of the classical convexity theory.

Nonexpansive retracts in Banach spaces

Eva Kopecká, Simeon Reich (2007)

Banach Center Publications

We study various aspects of nonexpansive retracts and retractions in certain Banach and metric spaces, with special emphasis on the compact nonexpansive envelope property.

Note on bi-Lipschitz embeddings into normed spaces

Jiří Matoušek (1992)

Commentationes Mathematicae Universitatis Carolinae

Let ( X , d ) , ( Y , ρ ) be metric spaces and f : X Y an injective mapping. We put f Lip = sup { ρ ( f ( x ) , f ( y ) ) / d ( x , y ) ; x , y X , x y } , and dist ( f ) = f Lip . f - 1 Lip (the distortion of the mapping f ). We investigate the minimum dimension N such that every n -point metric space can be embedded into the space N with a prescribed distortion D . We obtain that this is possible for N C ( log n ) 2 n 3 / D , where C is a suitable absolute constant. This improves a result of Johnson, Lindenstrauss and Schechtman [JLS87] (with a simpler proof). Related results for embeddability into p N are obtained by a similar method.

On (a,b,c,d)-orthogonality in normed linear spaces

C.-S. Lin (2005)

Colloquium Mathematicae

We first introduce a notion of (a,b,c,d)-orthogonality in a normed linear space, which is a natural generalization of the classical isosceles and Pythagorean orthogonalities, and well known α- and (α,β)-orthogonalities. Then we characterize inner product spaces in several ways, among others, in terms of one orthogonality implying another orthogonality.

Currently displaying 121 – 140 of 302