The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 2 of 2

Showing per page

Khinchin inequality and Banach-Saks type properties in rearrangement-invariant spaces

F. A. Sukochev, D. Zanin (2009)

Studia Mathematica

We study the class of all rearrangement-invariant ( = r.i.) function spaces E on [0,1] such that there exists 0 < q < 1 for which k = 1 n ξ k E C n q , where ξ k k 1 E is an arbitrary sequence of independent identically distributed symmetric random variables on [0,1] and C > 0 does not depend on n. We completely characterize all Lorentz spaces having this property and complement classical results of Rodin and Semenov for Orlicz spaces e x p ( L p ) , p ≥ 1. We further apply our results to the study of Banach-Saks index sets in...

Currently displaying 1 – 2 of 2

Page 1