The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 2501 – 2520 of 11160

Showing per page

Dense range perturbations of hypercyclic operators

Luis Bernal-Gonzalez (2002)

Colloquium Mathematicae

We show that if (Tₙ) is a hypercyclic sequence of linear operators on a locally convex space and (Sₙ) is a sequence of linear operators such that the image of each orbit under every linear functional is non-dense then the sequence (Tₙ + Sₙ) has dense range. Furthermore, it is proved that if T,S are commuting linear operators in such a way that T is hypercyclic and all orbits under S satisfy the above non-denseness property then T - S has dense range. Corresponding statements for operators and sequences...

Denseness of norm attaining mappings.

María D. Acosta (2006)

RACSAM

The Bishop-Phelps Theorem states that the set of (bounded and linear) functionals on a Banach space that attain their norms is dense in the dual. In the complex case, Lomonosov proved that there may be a closed, convex and bounded subset C of a Banach space such that the set of functionals whose maximum modulus is attained on C is not dense in the dual. This paper contains a survey of versions for operators, multilinear forms and polynomials of the Bishop-Phelps Theorem. Lindenstrauss provided examples...

Denting point in the space of operator-valued continuous maps.

Ryszard Grzaslewicz, Samir B. Hadid (1996)

Revista Matemática de la Universidad Complutense de Madrid

In a former paper we describe the geometric properties of the space of continuous functions with values in the space of operators acting on a Hilbert space. In particular we show that dent B(L(H)) = ext B(L(H)) if dim H < 8 and card K < 8 and dent B(L(H)) = 0 if dim H < 8 or card K = 8, and x-ext C(K,L(H)) = ext C(K,L(H)).

Dependence of fractional powers of elliptic operators on boundary conditions

Pavel E. Sobolevskii (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The realization of an elliptic operator A under suitable boundary conditions is considered and the dependence of the square-root of A from the various conditions is studied.

Derivations into iterated duals of Banach algebras

H. Dales, F. Ghahramani, N. Grønbæek (1998)

Studia Mathematica

We introduce two new notions of amenability for a Banach algebra A. The algebra A is n-weakly amenable (for n ∈ ℕ) if the first continuous cohomology group of A with coefficients in the n th dual space A ( n ) is zero; i.e., 1 ( A , A ( n ) ) = 0 . Further, A is permanently weakly amenable if A is n-weakly amenable for each n ∈ ℕ. We begin by examining the relations between m-weak amenability and n-weak amenability for distinct m,n ∈ ℕ. We then examine when Banach algebras in various classes are n-weakly amenable; we study...

Currently displaying 2501 – 2520 of 11160