A study of variational inequalities for set-valued mappings.
We study a Sturm-Liouville problem containing a spectral parameter in the boundary conditions. We associate to this problem a self-adjoint operator in a Pontryagin space Π₁. Using this operator-theoretic formulation and analytic methods, we study the asymptotic behavior of the eigenvalues under the variation of a large physical parameter in the boundary conditions. The spectral analysis is applied to investigate the well-posedness and stability of the wave equation of a string.
Let W be an operator weight taking values almost everywhere in the bounded positive invertible linear operators on a separable Hilbert space . We show that if W and its inverse both satisfy a matrix reverse Hölder property introduced by Christ and Goldberg, then the weighted Hilbert transform and also all weighted dyadic martingale transforms are bounded. We also show that this condition is not necessary for the boundedness of the weighted Hilbert transform.
This paper deals with the periodic boundary value problem for nonlinear impulsive functional differential equation We first present a survey and then obtain new sufficient conditions for the existence of at least one solution by using Mawhin’s continuation theorem. Examples are presented to illustrate the main results.
This paper concerns inequalities like TrA ≤ TrB, where A and B are certain Hermitian complex matrices and Tr stands for the trace. In most cases A and B will be exponential or logarithmic expressions of some other matrices. Due to the interest of the author in quantum statistical mechanics, the possible applications of the trace inequalities will be commented from time to time. Several inequalities treated below have been established in the context of Hilbert space operators or operator algebras....