The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1101 – 1120 of 1576

Showing per page

On the number of positive solutions of singularly perturbed 1D nonlinear Schrödinger equations

Patricio Felmer, Salomé Martínez, Kazunaga Tanaka (2006)

Journal of the European Mathematical Society

We study singularly perturbed 1D nonlinear Schrödinger equations (1.1). When V ( x ) has multiple critical points, (1.1) has a wide variety of positive solutions for small ε and the number of positive solutions increases to as ε 0 . We give an estimate of the number of positive solutions whose growth order depends on the number of local maxima of V ( x ) . Envelope functions or equivalently adiabatic profiles of high frequency solutions play an important role in the proof.

On the numerical range of operators on locally and on H-locally convex spaces

Edvard Kramar (1993)

Commentationes Mathematicae Universitatis Carolinae

The spatial numerical range for a class of operators on locally convex space was studied by Giles, Joseph, Koehler and Sims in [3]. The purpose of this paper is to consider some additional properties of the numerical range on locally convex and especially on H -locally convex spaces.

On the orbit of the centralizer of a matrix

Ching-I Hsin (2002)

Colloquium Mathematicae

Let A be a complex n × n matrix. Let A' be its commutant in Mₙ(ℂ), and C(A) be its centralizer in GL(n,ℂ). Consider the standard C(A)-action on ℂⁿ. We describe the C(A)-orbits via invariant subspaces of A'. For example, we count the number of C(A)-orbits as well as that of invariant subspaces of A'.

On the perturbation functions and similarity orbits

Haïkel Skhiri (2008)

Studia Mathematica

We show that the essential spectral radius ϱ e ( T ) of T ∈ B(H) can be calculated by the formula ϱ e ( T ) = inf · ( X T X - 1 ) : X an invertible operator, where · ( T ) is a Φ₁-perturbation function introduced by Mbekhta [J. Operator Theory 51 (2004)]. Also, we show that if · ( T ) is a Φ₂-perturbation function [loc. cit.] and if T is a Fredholm operator, then d i s t ( 0 , σ e ( T ) ) = sup · ( X T X - 1 ) : X an invertible operator.

Currently displaying 1101 – 1120 of 1576