The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 261 –
280 of
673
We give results about embeddings, approximation and convergence theorems for a class of general nonlinear operators of integral type in abstract modular function spaces. Thus we extend some previous result on the matter.
We present an integral equation method for solving boundary value problems of the Helmholtz equation in unbounded domains. The method relies on the factorisation of one of the Calderón projectors by an operator approximating the exterior admittance (Dirichlet to Neumann) operator of the scattering obstacle. We show how the pseudo-differential calculus allows us to construct such approximations and that this yields integral equations without internal resonances and being well-conditioned at all frequencies....
We present an integral equation method for solving boundary value
problems of the Helmholtz equation in unbounded domains. The
method relies on the factorisation of one of the
Calderón projectors by an operator approximating the exterior
admittance (Dirichlet to Neumann) operator of the scattering
obstacle. We show how the pseudo-differential calculus allows us
to construct such approximations and that this yields integral
equations without internal resonances and being well-conditioned
at all...
In this paper, we investigate a class of abstract degenerate fractional differential equations with Caputo derivatives. We consider subordinated fractional resolvent families generated by multivalued linear operators, which do have removable singularities at the origin. Semi-linear degenerate fractional Cauchy problems are also considered in this context.
We study an integro-differential operator Φ: H̅¹ → L² of Fredholm type and give sufficient conditions for Φ to be a diffeomorphism. An application to functional equations is presented.
2000 Mathematics Subject Classification: Primary 26A33; Secondary
47G20, 31B05We study a singular value problem and the boundary Harnack principle
for the fractional Laplacian on the exterior of the unit ball.
Currently displaying 261 –
280 of
673