The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 141 –
160 of
673
We study a system of pseudodifferential equations which is elliptic in the Petrovskii sense on a closed smooth manifold. We prove that the operator generated by the system is a Fredholm operator in a refined two-sided scale of Hilbert function spaces. Elements of this scale are special isotropic spaces of Hörmander-Volevich-Paneah.
Nous donnons des résultats analytiques sur les propriétés de régularité du laplacien hypoelliptique de Jean-Michel Bismut et plus généralement sur les opérateurs de type Fokker-Planck géométrique agissant sur le fibré cotangent d’une variété riemannienne compacte . En particulier, nous prouvons un résultat d’hypoellipticité maximale pour , et nous en déduisons des bornes sur la localisation de ses valeurs spectrales.
It is shown that maximal truncations of nonconvolution L²-bounded singular integral operators with kernels satisfying Hörmander’s condition are weak type (1,1) and -bounded for 1 < p< ∞. Under stronger smoothness conditions, such estimates can be obtained using a generalization of Cotlar’s inequality. This inequality is not applicable here and the point of this article is to treat the boundedness of such maximal singular integral operators in an alternative way.
Dans cet article nous étudions la série génératrice des poids alternés d’une moyenne de convolution induite par un processus de diffusion. Nous montrons que celle-ci est une fonction méromorphe, naturellement liée à un certain opérateur compact. Cette fonction est simplement égale à , lorsque le déterminant de Fredholm de cet opérateur existe, et nous la précisons dans les autres cas.
We find an exact asymptotic formula for the singular values of the integral operator of the form (, a Jordan measurable set) where , , and is slowly varying function with some additional properties. The formula is an explicit expression in terms of and .
Currently displaying 141 –
160 of
673