The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 41 –
60 of
124
In the present paper, we establish a common fixed point theorem for four self-mappings of a complete 2-metric space using the weak commutativity condition and -contraction type condition and then extend the theorem for a class of mappings.
Fixed point theorems of multivalued hybrid contractions and Meir-Keeler type multivalued maps are obtained in a metric space. Our results generalize corresponding results of Aubin and Siegel, Dube, Dube and Singh, Hadzic, Iseki, Jungck, Kaneko, Nadler, Park and Bae, Reich, Ray and many others.
We formulate a common fixed point theorem for four non-self mappings in convex partial metric spaces. The result extends a fixed point theorem by Gajić and Rakočević (2007) proved for two non-self mappings in metric spaces with a Takahashi convex structure. We also provide an illustrative example on the use of the theorem.
This work is considered as a continuation of [19,20,24]. The concepts of -compatibility and sub-compatibility of Li-Shan [19, 20] between a set-valued mapping and a single-valued mapping are used to establish some common fixed point theorems of Greguš type under a -type contraction on convex metric spaces. Extensions of known results, especially theorems by Fisher and Sessa [11] (Theorem B below) and Jungck [16] are thereby obtained. An example is given to support our extension.
Currently displaying 41 –
60 of
124