The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 121 –
140 of
1323
Let X be a Banach space, C a closed subset of X, and T:C → C a nonexpansive mapping. It has recently been shown that if X is reflexive and locally uniformly convex and if the fixed point set F(T) of T has nonempty interior then the Picard iterates of the mapping T always converge to a point of F(T). In this paper it is shown that if T is assumed to be asymptotically regular, this condition can be weakened much further. Finally, some observations are made about the geometric conditions imposed.
The proofs of Theorems 2.1, 2.2 and 2.3 from [Olatinwo M.O., Some results on multi-valued weakly jungck mappings in b-metric space, Cent. Eur. J. Math., 2008, 6(4), 610–621] base on faulty evaluations. We give here correct but weaker versions of these theorems.
Let X be an infinite-dimensional Banach space. The measure of solvability ν(I) of the identity operator I is equal to 1.
Currently displaying 121 –
140 of
1323