The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 81 – 100 of 222

Showing per page

Commutativity of set-valued cosine families

Andrzej Smajdor, Wilhelmina Smajdor (2014)

Open Mathematics

Let K be a closed convex cone with nonempty interior in a real Banach space and let cc(K) denote the family of all nonempty convex compact subsets of K. If F t: t ≥ 0 is a regular cosine family of continuous additive set-valued functions F t: K → cc(K) such that x ∈ F t(x) for t ≥ 0 and x ∈ K, then F t F s ( x ) = F s F t ( x ) f o r s , t 0 a n d x K .

Compact widths in metric trees

Asuman Güven Aksoy, Kyle Edward Kinneberg (2011)

Banach Center Publications

The definition of n-width of a bounded subset A in a normed linear space X is based on the existence of n-dimensional subspaces. Although the concept of an n-dimensional subspace is not available for metric trees, in this paper, using the properties of convex and compact subsets, we present a notion of n-widths for a metric tree, called Tn-widths. Later we discuss properties of Tn-widths, and show that the compact width is attained. A relationship between the compact widths and Tn-widths is also...

Compactness and convergence of set-valued measures

Kenny Koffi Siggini (2009)

Colloquium Mathematicae

We prove criteria for relative compactness in the space of set-valued measures whose values are compact convex sets in a Banach space, and we generalize to set-valued measures the famous theorem of Dieudonné on convergence of real non-negative regular measures.

Currently displaying 81 – 100 of 222