The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The 2D-Signorini contact problem with Tresca and Coulomb friction is discussed in infinite-dimensional Hilbert spaces. First, the problem with given friction (Tresca friction) is considered. It leads to a constraint non-differentiable minimization problem. By means of the Fenchel duality theorem this problem can be transformed into a constrained minimization involving a smooth functional. A regularization technique for the dual problem motivated by augmented lagrangians allows to apply an infinite-dimensional...
The 2D-Signorini contact problem with Tresca and Coulomb friction
is discussed in infinite-dimensional Hilbert spaces. First, the
problem with given friction (Tresca friction) is considered. It
leads to a constraint non-differentiable minimization problem. By
means of the Fenchel duality theorem this problem can be transformed
into a constrained minimization involving a smooth functional. A
regularization technique for the dual problem motivated by augmented
Lagrangians allows to apply an...
A numerically inexpensive globalization strategy of sequential quadratic programming methods (SQP-methods) for control of the instationary Navier Stokes equations is investigated. Based on the proper functional analytic setting a convergence analysis for the globalized method is given. It is argued that the a priori formidable SQP-step can be decomposed into linear primal and linear adjoint systems, which is amenable for existing CFL-software. A report on a numerical test demonstrates the feasibility...
A numerically inexpensive globalization strategy of sequential quadratic programming
methods (SQP-methods) for control of the instationary Navier Stokes equations is investigated.
Based on the proper functional analytic setting a convergence analysis for the globalized method
is given. It is argued that the a priori formidable SQP-step can be decomposed into linear primal
and linear adjoint systems, which is amenable for existing CFL-software. A report on a numerical
test demonstrates the feasibility...
Currently displaying 1 –
4 of
4