Displaying 161 – 180 of 218

Showing per page

Tilings associated with non-Pisot matrices

Maki Furukado, Shunji Ito, E. Arthur Robinson (2006)

Annales de l’institut Fourier

Suppose A G l d ( ) has a 2-dimensional expanding subspace E u , satisfies a regularity condition, called “good star”, and has A * 0 , where A * is an oriented compound of A . A morphism θ of the free group on { 1 , 2 , , d } is called a non-abelianization of A if it has structure matrix A . We show that there is a tiling substitution Θ whose “boundary substitution” θ = Θ is a non-abelianization of A . Such a tiling substitution Θ leads to a self-affine tiling of E u 2 with A u : = A | E u G L 2 ( ) as its expansion. In the last section we find conditions on A so...

Tilings of convex polygons

Richard Kenyon (1997)

Annales de l'institut Fourier

Call a polygon rational if every pair of side lengths has rational ratio. We show that a convex polygon can be tiled with rational polygons if and only if it is itself rational. Furthermore we give a necessary condition for an arbitrary polygon to be tileable with rational polygons: we associate to any polygon P a quadratic form q ( P ) , which must be positive semidefinite if P is tileable with rational polygons.The above results also hold replacing the rationality condition with the following: a polygon...

Topologies faciales dans les convexes compacts. Calcul fonctionnel et décomposition spectrale dans le centre d’un espace A ( X )

Marc Rogalski (1972)

Annales de l'institut Fourier

Cet article étudie, sur l’ensemble 𝒮 ( X ) des points extrémaux d’un convexe compact X , des topologies faciales dont les fermés sont les traces de faces F “parallélisables” (il existe une plus grande face F ' disjointe de F , et tout x de X s’écrit x = λ y + ( 1 - λ ) y ' , y F , y ' F ' , avec λ unique). Les topologies faciales uniformisables sont en bijection avec les sous-espaces réticulés fermés et contenant 1 de l’espace A ( X ) des fonctions affines continues sur X . Ceci redonne des résultats classiques sur les simplexes, et permet une étude...

Topology and geometry of nontrivial rank-one convex hulls for two-by-two matrices

Carl-Friedrich Kreiner, Johannes Zimmer (2006)

ESAIM: Control, Optimisation and Calculus of Variations

Continuing earlier work by Székelyhidi, we describe the topological and geometric structure of so-called T4-configurations which are the most prominent examples of nontrivial rank-one convex hulls. It turns out that the structure of T4-configurations in 2 × 2 is very rich; in particular, their collection is open as a subset of ( 2 × 2 ) 4 . Moreover a previously purely algebraic criterion is given a geometric interpretation. As a consequence, we sketch an improved algorithm to detect T4-configurations. ...

Topology of arrangements and position of singularities

Enrique Artal Bartolo (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

This work contains an extended version of a course given in Arrangements in Pyrénées. School on hyperplane arrangements and related topics held at Pau (France) in June 2012. In the first part, we recall the computation of the fundamental group of the complement of a line arrangement. In the second part, we deal with characteristic varieties of line arrangements focusing on two aspects: the relationship with the position of the singular points (relative to projective curves of some prescribed degrees)...

Currently displaying 161 – 180 of 218