The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we show that a linear variational inequality over an infinite dimensional real Hilbert space admits solutions for every nonempty bounded closed and convex set, if and only if the linear operator involved in the variational inequality is pseudo-monotone in the sense of Brezis.
In this paper we show that a linear variational inequality over an infinite dimensional real Hilbert space
admits solutions for every nonempty bounded closed and convex set, if and only if the linear operator
involved in the variational inequality is pseudo-monotone in the sense of Brezis.
The least concave majorant, , of a continuous function on a closed interval, , is defined by
We present an algorithm, in the spirit of the Jarvis March, to approximate the least concave majorant of a differentiable piecewise polynomial function of degree at most three on . Given any function , it can be well-approximated on by a clamped cubic spline . We show that is then a good approximation to . We give two examples, one to illustrate, the other to apply our algorithm.
We prove an abstract selection theorem for set-valued mappings with compact convex values in a normed space. Some special cases of this result as well as its applications to separation theory and Hyers-Ulam stability of affine functions are also given.
Under some mild assumptions, non-linear diameter-preserving bijections between (vector-valued) function spaces are characterized with the help of a well-known theorem of Ulam and Mazur. A necessary and sufficient condition for the existence of a diameter-preserving bijection between function spaces in the complex scalar case is derived, and a complete description of such maps is given in several important cases.
We introduce the convex cone constituted by the directions
of majoration of a quasiconvex function. This cone is used to formulate a
qualification condition ensuring the epiconvergence of a sequence of general
quasiconvex marginal functions in finite dimensional spaces.
Currently displaying 1 –
20 of
45