Coherence constraints for operads, categories and algebras
Nous démontrons des théorèmes de dualité de Poincaré et de de Rham pour la cohomologie basique et l’homologie des courants transverses invariants d’un feuilletage riemannien.
On a flat manifold , M. Kontsevich’s formality quasi-isomorphism is compatible with cup-products on tangent cohomology spaces, in the sense that for any formal Poisson -tensor the derivative at of the quasi-isomorphism induces an isomorphism of graded commutative algebras from Poisson cohomology space to Hochschild cohomology space relative to the deformed multiplication built from via the quasi-isomorphism. We give here a detailed proof of this result, with signs and orientations precised....
We generalize the concept of warped manifold to Riemannian submersions π: M → B between two compact Riemannian manifolds and in the following way. If f: B → (0,∞) is a smooth function on B which is extended to a function f̂ = f ∘ π constant along the fibres of π then we define a new metric on M by , where and denote the bundles of horizontal and vertical vectors. The manifold obtained that way is called a warped submersion. The function f is called a warping function. We show a necessary...