Representation of non-Hamiltonian vector fields in the coordinates of the observer via the isosymplectic geometry.
[For the entire collection see Zbl 0742.00067.]The Tanaka-Krein type equivalence between Hopf algebras and functored monoidal categories provides the heuristic strategy of this paper. The author introduces the notion of a double cross product of monoidal categories as a generalization of double cross product of Hopf algebras, and explains some of the motivation from physics (the representation theory for double quantum groups).The Hopf algebra constructions are formulated in terms of monoidal categories...
The paper extends the theory of residues on monogenic forms on domains in (monogenic forms are generalizations of holomorphic forms to Clifford analysis) to monogenic forms on orientable Riemann manifolds.
We prove the unique existence of the (non-linear) resolvent associated to a coercive proper lower semicontinuous function satisfying a weak notion of p-uniform λ-convexity on a complete metric space, and establish the existence of the minimizer of such functions as the large time limit of the resolvents, which generalizing pioneering work by Jost for convex functionals on complete CAT(0)-spaces. The results can be applied to Lp-Wasserstein space over complete p-uniformly convex spaces. As an application,...
We consider an optimal control problem describing a laser-induced population transfer on a -level quantum system. For a convex cost depending only on the moduli of controls (i.e. the lasers intensities), we prove that there always exists a minimizer in resonance. This permits to justify some strategies used in experimental physics. It is also quite important because it permits to reduce remarkably the complexity of the problem (and extend some of our previous results for and ): instead of looking...
We consider an optimal control problem describing a laser-induced population transfer on a n-level quantum system. For a convex cost depending only on the moduli of controls (i.e. the lasers intensities), we prove that there always exists a minimizer in resonance. This permits to justify some strategies used in experimental physics. It is also quite important because it permits to reduce remarkably the complexity of the problem (and extend some of our previous results for n=2 and n=3): instead...