The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 221 –
240 of
8747
We study the notion of strong -stability for the context of closed hypersurfaces () with constant -th mean curvature immersed into the Euclidean sphere , where . In this setting, under a suitable restriction on the -th mean curvature , we establish that there are no -strongly stable closed hypersurfaces immersed in a certain region of , a region that is determined by a totally umbilical sphere of . We also provide a rigidity result for such hypersurfaces.
A holomorphic representation formula for special parabolic hyperspheres is given.
We study the complex hypersurfaces which together with their transversal bundles have the property that around any point of M there exists a local section of the transversal bundle inducing a ∇-parallel anti-complex shape operator S. We give a class of examples of such hypersurfaces with an arbitrary rank of S from 1 to [n/2] and show that every such hypersurface with positive type number and S ≠ 0 is locally of this kind, modulo an affine isomorphism of .
Currently displaying 221 –
240 of
8747