The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 221 –
240 of
334
In the first part of this paper, we study the best constant involving the L2 norm in Wente's inequality. We prove that this best constant
is universal for any Riemannian surface with boundary, or respectively, for any Riemannian surface without boundary. The second
part concerns the study of critical points of the associate energy functional, whose Euler equation corresponds to H-surfaces. We will
establish the existence of a non-trivial critical point for a plan domain with small holes.
We characterize the linear space ℋ of differences of support functions of convex bodies of 𝔼² and we consider every h ∈ ℋ as the support function of a generalized hedgehog (a rectifiable closed curve having exactly one oriented support line in each direction). The mixed area (for plane convex bodies identified with their support functions) has a symmetric bilinear extension to ℋ which can be interpreted as a mixed area for generalized hedgehogs. We study generalized hedgehogs and we extend the...
We relate the total curvature and the isoperimetric deficit of a curve in a two-dimensional space of constant curvature with the area enclosed by the evolute of . We provide also a Gauss-Bonnet theorem for a special class of evolutes.
We consider the evolution of an entire convex graph in euclidean space with speed given by a symmetric function of the principal curvatures. Under suitable assumptions on the speed and on the initial data, we prove that the solution exists for all times and it remains a graph. In addition, after appropriate rescaling, it converges to a homothetically expanding solution of the flow. In this way, we extend to a class of nonlinear speeds the well known results of Ecker and Huisken for the mean curvature...
The purpose of this paper is to prove that there exists a lattice on a certain solvable Lie group and construct a six-dimensional locally conformal Kähler solvmanifold with non-parallel Lee form.
Currently displaying 221 –
240 of
334