Displaying 3401 – 3420 of 8747

Showing per page

Kähler-Einstein metrics singular along a smooth divisor

Raffe Mazzeo (1999)

Journées équations aux dérivées partielles

In this note we discuss some recent and ongoing joint work with Thalia Jeffres concerning the existence of Kähler-Einstein metrics on compact Kähler manifolds which have a prescribed incomplete singularity along a smooth divisor D . We shall begin with a general discussion of the problem, and give a rough outline of the “classical” proof of existence in the smooth case, due to Yau and Aubin, where no singularities are prescribed. Following this is a discussion of the geometry of the conical or edge...

K-contact A-manifolds

WŁodzimierz Jelonek (1998)

Colloquium Mathematicae

The aim of this paper is to give a characterization of regular K-contact A-manifolds.

Kikkawa loops and homogeneous loops

Michihiko Kikkawa (2004)

Commentationes Mathematicae Universitatis Carolinae

In H. Kiechle's publication ``Theory of K-loops'' [3], the name Kikkawa loops is given to symmetric loops introduced by the author in 1973. This concept started from an analogical imagination of sum of vectors in Euclidean space brought up on a sphere. In 1975, this concept was extended by him to the more general concept of homogeneous loops, and it led us to a non-associative generalization of the theory of Lie groups. In this article, the backstage of finding these concepts will be disclosed from...

Killing spinor-valued forms and the cone construction

Petr Somberg, Petr Zima (2016)

Archivum Mathematicum

On a pseudo-Riemannian manifold 𝕄 we introduce a system of partial differential Killing type equations for spinor-valued differential forms, and study their basic properties. We discuss the relationship between solutions of Killing equations on 𝕄 and parallel fields on the metric cone over 𝕄 for spinor-valued forms.

Currently displaying 3401 – 3420 of 8747