Kähler Spaces and Proper Open Morphisms.
In this note we discuss some recent and ongoing joint work with Thalia Jeffres concerning the existence of Kähler-Einstein metrics on compact Kähler manifolds which have a prescribed incomplete singularity along a smooth divisor . We shall begin with a general discussion of the problem, and give a rough outline of the “classical” proof of existence in the smooth case, due to Yau and Aubin, where no singularities are prescribed. Following this is a discussion of the geometry of the conical or edge...
The aim of this paper is to give a characterization of regular K-contact A-manifolds.
In H. Kiechle's publication ``Theory of K-loops'' [3], the name Kikkawa loops is given to symmetric loops introduced by the author in 1973. This concept started from an analogical imagination of sum of vectors in Euclidean space brought up on a sphere. In 1975, this concept was extended by him to the more general concept of homogeneous loops, and it led us to a non-associative generalization of the theory of Lie groups. In this article, the backstage of finding these concepts will be disclosed from...
On a pseudo-Riemannian manifold we introduce a system of partial differential Killing type equations for spinor-valued differential forms, and study their basic properties. We discuss the relationship between solutions of Killing equations on and parallel fields on the metric cone over for spinor-valued forms.
We give a description of compact Einstein-Weyl manifolds in terms of Killing tensors.