Lines of curvature, ridges and conformal invariants of hypersurfaces.
For a given U(1)-bundle E over M = {x1, ..., xn}, where the xi are n distinct points of , we minimise the U(1)-Higgs action and we make an asymptotic analysis of the minimizers when the coupling constant tends to infinity. We prove that the curvature (= magnetic field) converges to a limiting curvature that we give explicitely and which is singular along line vortices which connect the xi. This work is the three dimensional equivalent of previous works in dimension two (see [3] and [4]). The...
For a Morse function on a compact oriented manifold , we show that has more critical points than the number required by the Morse inequalities if and only if there exists a certain class of link in whose components have nontrivial linking number, such that the minimal value of on one of the components is larger than its maximal value on the other. Indeed we characterize the precise number of critical points of in terms of the Betti numbers of and the behavior of with respect to links....
A Liouville form on a symplectic manifold is by definition a potential of the symplectic form . Its center is given by . A normal form for certain Liouville forms in a neighborhood of its center is given.
We show that Lissajous knots are equivalent to billiard knots in a cube. We consider also knots in general 3-dimensional billiard tables. We analyse symmetry of knots in billiard tables and show in particular that the Alexander polynomial of a Lissajous knot is a square modulo 2.