The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 61 –
80 of
707
Dirac-harmonic maps are a mathematical version (with commuting variables only) of the solutions of the field equations of the non-linear supersymmetric sigma model of quantum field theory. We explain this structure, including the appropriate boundary conditions, in a geometric framework. The main results of our paper are concerned with the analytic regularity theory of such Dirac-harmonic maps. We study Dirac-harmonic maps from a Riemannian surface to an arbitrary compact Riemannian manifold. We...
We show that the Gerstenhaber algebra of the 1-jet Lie algebroid of a Jacobi manifold has a canonical exact generator, and discuss duality between its homology and the Lie algebroid cohomology. We also give new examples of Lie bialgebroids over Poisson manifolds.
We study the Calabi functional on a ruled surface over a genus two curve. For polarizations which do not admit an extremal metric we describe the behavior of a minimizing sequence splitting the manifold into pieces. We also show that the Calabi flow starting from a metric with suitable symmetry gives such a minimizing sequence.
We classify classical linear connections on the total space of a fibred manifold induced in a natural way by the following three objects: a general connection in , a classical linear connection on and a linear connection in the vertical bundle . The main result says that if and then the natural operators under consideration form the dimensional affine space.
A centrally symmetric plane curve has a point called it’s centre of symmetry. We define (following Janeczko) a set which measures the central symmetry of an arbitrary strictly convex plane curve, or surface in . We investigate some of it’s properties, and begin the study of non-convex cases.
Clairaut’s theorem is expressed on the surfaces of rotation in semi Euclidean 4-space. Moreover, the general equations of time-like geodesic curves are characterized according to the results of Clairaut's theorem on the hyperbolic surfaces of rotation and the elliptic surface of rotation, respectively.
Currently displaying 61 –
80 of
707