The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 61 – 80 of 707

Showing per page

The boundary value problem for Dirac-harmonic maps

Qun Chen, Jürgen Jost, Guofang Wang, Miaomiao Zhu (2013)

Journal of the European Mathematical Society

Dirac-harmonic maps are a mathematical version (with commuting variables only) of the solutions of the field equations of the non-linear supersymmetric sigma model of quantum field theory. We explain this structure, including the appropriate boundary conditions, in a geometric framework. The main results of our paper are concerned with the analytic regularity theory of such Dirac-harmonic maps. We study Dirac-harmonic maps from a Riemannian surface to an arbitrary compact Riemannian manifold. We...

The BV-algebra of a Jacobi manifold

Izu Vaisman (2000)

Annales Polonici Mathematici

We show that the Gerstenhaber algebra of the 1-jet Lie algebroid of a Jacobi manifold has a canonical exact generator, and discuss duality between its homology and the Lie algebroid cohomology. We also give new examples of Lie bialgebroids over Poisson manifolds.

The Calabi functional on a ruled surface

Gábor Székelyhidi (2009)

Annales scientifiques de l'École Normale Supérieure

We study the Calabi functional on a ruled surface over a genus two curve. For polarizations which do not admit an extremal metric we describe the behavior of a minimizing sequence splitting the manifold into pieces. We also show that the Calabi flow starting from a metric with suitable symmetry gives such a minimizing sequence.

The canonical constructions of connections on total spaces of fibred manifolds

Włodzimierz M. Mikulski (2024)

Archivum Mathematicum

We classify classical linear connections A ( Γ , Λ , Θ ) on the total space Y of a fibred manifold Y M induced in a natural way by the following three objects: a general connection Γ in Y M , a classical linear connection Λ on M and a linear connection Θ in the vertical bundle V Y Y . The main result says that if dim ( M ) 3 and dim ( Y ) - dim ( M ) 3 then the natural operators A under consideration form the 17 dimensional affine space.

The centre symmetry set

Peter Giblin, Paul Holtom (1999)

Banach Center Publications

A centrally symmetric plane curve has a point called it’s centre of symmetry. We define (following Janeczko) a set which measures the central symmetry of an arbitrary strictly convex plane curve, or surface in R 3 . We investigate some of it’s properties, and begin the study of non-convex cases.

The Clairaut's theorem on rotational surfaces in pseudo-Euclidean 4-space with index 2

Fatma Almaz, Mihriban A. Külahci (2024)

Commentationes Mathematicae Universitatis Carolinae

Clairaut’s theorem is expressed on the surfaces of rotation in semi Euclidean 4-space. Moreover, the general equations of time-like geodesic curves are characterized according to the results of Clairaut's theorem on the hyperbolic surfaces of rotation and the elliptic surface of rotation, respectively.

Currently displaying 61 – 80 of 707