On totally umbilical -submanifolds of a Kähler manifold.
The notion of a totally umbilical submanifold of a Finsler manifold is introduced. Some Gauss equations are given and some results on totally umbilical submanifolds of Riemannian manifolds are generalized. Totally umbilical submanifolds of Randers spaces are studied; a rigidity theorem and an example are given.
A G-structure on a Riemannian manifold is said to be integrable if it is preserved by the Levi-Civita connection. In the presented paper, the following non-integrable G-structures are studied: SO(3)-structures in dimension 5; almost complex structures in dimension 6; G-structures in dimension 7; Spin(7)-structures in dimension 8; Spin(9)-structures in dimension 16 and F-structures in dimension 26. G-structures admitting an affine connection with totally skew-symmetric torsion are characterized....
In Riemannian geometry the prescribed Ricci curvature problem is as follows: given a smooth manifold and a symmetric 2-tensor , construct a metric on whose Ricci tensor equals . In particular, DeTurck and Koiso proved the following celebrated result: the Ricci curvature uniquely determines the Levi-Civita connection on any compact Einstein manifold with non-negative section curvature. In the present paper we generalize the result of DeTurck and Koiso for a Riemannian manifold with non-negative...