The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1261 –
1280 of
8747
On étudie la complétude géodésique des flots nul-prégéodésiques sur les variétés lorentziennes compactes, ce qui donne une obstruction à être nul-géodésique. On montre que lorsque l’orthogonal du champ de vecteurs engendrant le flot considéré s’intègre en un feuilletage , la complétude du flot se lit sur l’holonomie de . On montre ainsi qu’il n’existe pas de flots nul-géodésiques lisses sur . On montre aussi qu’un -tore lorentzien est nul-complet si et seulement si ses feuilletages de type lumière...
Holomorphic maps of Cartan domains of type four preserving the supports of complex geodesics are characterized, providing, in particular, a new description of holomorphic isometries.
There is an obvious topological obstruction for a finite energy unimodular harmonic extension of a -valued function defined on the boundary of a bounded regular domain of . When such extensions do not exist, we use the Ginzburg-Landau relaxation
procedure. We prove that, up to a subsequence, a sequence of Ginzburg-Landau minimizers, as the coupling parameter tends to infinity, converges to a unimodular harmonic map away from a codimension-2 minimal current minimizing the area within the homology...
This is an exposition of a general machinery developed by M. G. Eastwood, T. N. Bailey, C. R. Graham which analyses some real integral transforms using complex methods. The machinery deals with double fibrations complex manifold; totally real, real-analytic submanifold;...
Currently displaying 1261 –
1280 of
8747