Displaying 1681 – 1700 of 8738

Showing per page

Cut and singular loci up to codimension 3

Pablo Angulo Ardoy, Luis Guijarro (2011)

Annales de l’institut Fourier

We give a new and detailed description of the structure of cut loci, with direct applications to the singular sets of some Hamilton-Jacobi equations. These sets may be non-triangulable, but a local description at all points except for a set of Hausdorff dimension n - 2 is well known. We go further in this direction by giving a classification of all points up to a set of Hausdorff dimension n - 3 .

Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane*

Yuri L. Sachkov (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The left-invariant sub-Riemannian problem on the group of motions (rototranslations) of a plane SE(2) is considered. In the previous works [Moiseev and Sachkov, ESAIM: COCV, DOI: 10.1051/cocv/2009004; Sachkov, ESAIM: COCV, DOI: 10.1051/cocv/2009031], extremal trajectories were defined, their local and global optimality were studied. In this paper the global structure of the exponential mapping is described. On this basis an explicit characterization of the cut locus and Maxwell set is obtained....

Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane*

Yuri L. Sachkov (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The left-invariant sub-Riemannian problem on the group of motions (rototranslations) of a plane SE(2) is considered. In the previous works [Moiseev and Sachkov, ESAIM: COCV, DOI: 10.1051/cocv/2009004; Sachkov, ESAIM: COCV, DOI: 10.1051/cocv/2009031], extremal trajectories were defined, their local and global optimality were studied. In this paper the global structure of the exponential mapping is described. On this basis an explicit characterization of the cut locus and Maxwell set is obtained....

Darboux transforms of Dupin surfaces

Emilio Musso, Lorenzo Nicolodi (2002)

Banach Center Publications

We present a Möbius invariant construction of the Darboux transformation for isothermic surfaces by the method of moving frames and use it to give a complete classification of the Darboux transforms of Dupin surfaces.

Darboux-Zwangläufe und äquiforme Kinematik

Otto Röschel (1991)

Applications of Mathematics

In dieser Arbeit werden Yusammensetzungen euklidischer Darboux - Zwangläufe mit rastfesten zentrischen Ähnlichkeiten studiert. Bei den so entstehenden zweiparametrigen äquiformen Bewegungsvorgängen werden die Punkte einer besonderen gangfesten Fläche dritter Ordnung φ in Bahnebenen geführt, während allgemeine Punkte des Gangraumes an Kegel zweiter Ordnung gebunden sind. Weiters wird gezeigt, dass sich durch Spezialisierung innerhalb dieser zweiparametrigen Schar alle von A. Karger [2] angegeben...

Currently displaying 1681 – 1700 of 8738