Displaying 161 – 180 of 1190

Showing per page

On an extended contact Bochner curvature tensor on contact metric manifolds

Hiroshi Endo (1993)

Colloquium Mathematicae

On Sasakian manifolds, Matsumoto and Chūman [3] defined a contact Bochner curvature tensor (see also Yano [7]) which is invariant under D-homothetic deformations (for D-homothetic deformations, see Tanno [5]). On the other hand, Tricerri and Vanhecke [6] defined a general Bochner curvature tensor with conformal invariance on almost Hermitian manifolds. In this paper we define an extended contact Bochner curvature tensor which is invariant under D-homothetic deformations of contact metric manifolds;...

On applications of the Yano–Ako operator

A. Magden, Arif A. Salimov (2006)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper we consider a method by which a skew-symmetric tensor field of type (1,2) in M n can be extended to the tensor bundle T q 0 ( M n ) ( q > 0 ) on the pure cross-section....

On Asymmetric Distances

Andrea C.G. Mennucci (2013)

Analysis and Geometry in Metric Spaces

In this paper we discuss asymmetric length structures and asymmetric metric spaces. A length structure induces a (semi)distance function; by using the total variation formula, a (semi)distance function induces a length. In the first part we identify a topology in the set of paths that best describes when the above operations are idempotent. As a typical application, we consider the length of paths defined by a Finslerian functional in Calculus of Variations. In the second part we generalize the...

On asymptotic motions of robot-manipulator in homogeneous space

Anton Dekrét, Ján Bakša (2008)

Applications of Mathematics

In this paper the notion of robot-manipulators in the Euclidean space is generalized to the case in a general homogeneous space with the Lie group G of motions. Some kinematic subspaces of the Lie algebra 𝒢 (the subspaces of velocity operators, of Coriolis acceleration operators, asymptotic subspaces) are introduced and by them asymptotic and geodesic motions are described.

On Bochner flat para-Kählerian manifolds

Dorota Łuczyszyn (2005)

Open Mathematics

Let B be the Bochner curvature tensor of a para-Kählerian manifold. It is proved that if the manifold is Bochner parallel (∇ B = 0), then it is Bochner flat (B = 0) or locally symmetric (∇ R = 0). Moreover, we define the notion of tha paraholomorphic pseudosymmetry of a para-Kählerian manifold. We find necessary and sufficient conditions for a Bochner flat para-Kählerian manifold to be paraholomorphically pseudosymmetric. Especially, in the case when the Ricci operator is diagonalizable, a Bochner...

Currently displaying 161 – 180 of 1190