The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We use the properties of to construct functions associated with the elements of the lagrangian grassmannian (n) which generalize the Maslov index on Mp(n) defined by J. Leray in his “Lagrangian Analysis”. We deduce from these constructions the identity between and a subset of , equipped with appropriate algebraic and topological structures.
We discuss the role of Poisson-Nijenhuis (PN) geometry in the definition of multiplicative integrable models on symplectic groupoids. These are integrable models that are compatible with the groupoid structure in such a way that the set of contour levels of the hamiltonians in involution inherits a topological groupoid structure. We show that every maximal rank PN structure defines such a model. We consider the examples defined on compact hermitian symmetric spaces studied by F. Bonechi, J. Qiu...
Currently displaying 1 –
4 of
4