The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For a non-isolated point of a topological space let be the smallest cardinality of a family of infinite subsets of such that each neighborhood of contains a set . We prove that
(a) each infinite compact Hausdorff space contains a non-isolated point with ;
(b) for each point with there is an injective sequence in that -converges to for some meager filter on ;
(c) if a functionally Hausdorff space contains an -convergent injective sequence for some meager filter...
The notion of quasi-p-boundedness for p ∈ is introduced and investigated. We characterize quasi-p-pseudocompact subsets of β(ω) containing ω, and we show that the concepts of RK-compatible ultrafilter and P-point in can be defined in terms of quasi-p-pseudocompactness. For p ∈ , we prove that a subset B of a space X is quasi-p-bounded in X if and only if B × is bounded in X × , if and only if , where is the set of Rudin-Keisler predecessors of p.
Let I ⊆ P(ω) be an ideal. We continue our investigation of the class of spaces with the I-ideal convergence property, denoted (I). We show that if I is an analytic, non-countably generated P-ideal then (I) ⊆ s₀. If in addition I is non-pathological and not isomorphic to , then (I) spaces have measure zero. We also present a characterization of the (I) spaces using clopen covers.
An infinite set A in a space X converges to a point p (denoted by A → p) if for every neighbourhood U of p we have |A∖U| < |A|. We call cS(p,X) = |A|: A ⊂ X and A → p the convergence spectrum of p in X and cS(X) = ⋃cS(x,X): x ∈ X the convergence spectrum of X. The character spectrum of a point p ∈ X is χS(p,X) = χ(p,Y): p is non-isolated in Y ⊂ X, and χS(X) = ⋃χS(x,X): x ∈ X is the character spectrum of X. If κ ∈ χS(p,X) for a compactum X then κ,cf(κ) ⊂ cS(p,X). A selection of our results (X...
We shall show that there is an ultrafilter on singular with countable cofinality, which cannot be reached from the set of all subuniform ultrafilters by iterating the closure of sets of size .
We show that the statement CCFC = “the character of a maximal free filter of closed sets in a space is not countable” is equivalent to the Countable Multiple Choice Axiom CMC and, the axiom of choice AC is equivalent to the statement CFE = “closed filters in a space extend to maximal closed filters”. We also show that AC is equivalent to each of the assertions: “every closed filter in a space extends to a maximal closed filter with a well orderable filter base”, “for every set ,...
In 1998, S. Romaguera [13] introduced the notion of cofinally Čech-complete spaces equivalent to spaces which we later called ultracomplete spaces. We define the subset of points of a space at which is not locally compact and call it an nlc set. In 1999, Garc’ıa-Máynez and S. Romaguera [6] proved that every cofinally Čech-complete space has a bounded nlc set. In 2001, D. Buhagiar [1] proved that every ultracomplete GO-space has a compact nlc set. In this paper, ultracomplete spaces which have...
Currently displaying 21 –
40 of
52