The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 141 – 160 of 388

Showing per page

Involutions on the second duals of group algebras versus subamenable groups

Ajit Iqbal Singh (2011)

Studia Mathematica

Let L¹(G)** be the second dual of the group algebra L¹(G) of a locally compact group G. We study the question of involutions on L¹(G)**. A new class of subamenable groups is introduced which is universal for all groups. There is no involution on L¹(G)** for a subamenable group G.

Local cardinal functions of H-closed spaces

Angelo Bella, Jack R. Porter (1996)

Commentationes Mathematicae Universitatis Carolinae

The cardinal functions of pseudocharacter, closed pseudocharacter, and character are used to examine H-closed spaces and to contrast the differences between H-closed and minimal Hausdorff spaces. An H-closed space X is produced with the properties that | X | > 2 2 ψ ( X ) and ψ ¯ ( X ) > 2 ψ ( X ) .

Local/global uniform approximation of real-valued continuous functions

Anthony W. Hager (2011)

Commentationes Mathematicae Universitatis Carolinae

For a Tychonoff space X , C ( X ) is the lattice-ordered group ( l -group) of real-valued continuous functions on X , and C * ( X ) is the sub- l -group of bounded functions. A property that X might have is (AP) whenever G is a divisible sub- l -group of C * ( X ) , containing the constant function 1, and separating points from closed sets in X , then any function in C ( X ) can be approximated uniformly over X by functions which are locally in G . The vector lattice version of the Stone-Weierstrass Theorem is more-or-less equivalent...

More on tie-points and homeomorphism in ℕ*

Alan Dow, Saharon Shelah (2009)

Fundamenta Mathematicae

A point x is a (bow) tie-point of a space X if X∖x can be partitioned into (relatively) clopen sets each with x in its closure. We denote this as X = A x B where A, B are the closed sets which have a unique common accumulation point x. Tie-points have appeared in the construction of non-trivial autohomeomorphisms of βℕ = ℕ* (by Veličković and Shelah Steprans) and in the recent study (by Levy and Dow Techanie) of precisely 2-to-1 maps on ℕ*. In these cases the tie-points have been the unique fixed point...

More on κ -Ohio completeness

D. Basile (2011)

Commentationes Mathematicae Universitatis Carolinae

We study closed subspaces of κ -Ohio complete spaces and, for κ uncountable cardinal, we prove a characterization for them. We then investigate the behaviour of products of κ -Ohio complete spaces. We prove that, if the cardinal κ + is endowed with either the order or the discrete topology, the space ( κ + ) κ + is not κ -Ohio complete. As a consequence, we show that, if κ is less than the first weakly inaccessible cardinal, then neither the space ω κ + , nor the space κ + is κ -Ohio complete.

Natural sinks on Y β

J. Schröder (1992)

Commentationes Mathematicae Universitatis Carolinae

Let ( e β : 𝐐 Y β ) β Ord be the large source of epimorphisms in the category Ury of Urysohn spaces constructed in [2]. A sink ( g β : Y β X ) β Ord is called natural, if g β e β = g β ' e β ' for all β , β ' Ord . In this paper natural sinks are characterized. As a result it is shown that Ury permits no ( E p i , ) -factorization structure for arbitrary (large) sources.

Currently displaying 141 – 160 of 388